Etingof-kazhdan Quantization of Lie Superbialgebras
نویسنده
چکیده
For every semi-simple Lie algebra g one can construct the DrinfeldJimbo algebra U h (g). This algebra is a deformation Hopf algebra defined by generators and relations. To study the representation theory of U h (g), Drinfeld used the KZ-equations to construct a quasi-Hopf algebra Ag . He proved that particular categories of modules over the algebras U h (g) and Ag are tensor equivalent. Analogous constructions of the algebras U h (g) and Ag exist in the case when g is a Lie superalgebra of type A-G. However, Drinfeld’s proof of the above equivalence of categories does not generalize to Lie superalgebras. In this paper, we will discuss an alternate proof for Lie superalgebras of type A-G. Our proof utilizes the Etingof-Kazhdan quantization of Lie (super)bialgebras. It should be mentioned that the above equivalence is very useful. For example, it has been used in knot theory to relate quantum group invariants and the Kontsevich integral.
منابع مشابه
Some Remarks on Quantized Lie Superalgebras of Classical Type
In this paper we use the Etingof-Kazhdan quantization of Lie bisuperalgebras to investigate some interesting questions related to DrinfeldJimbo type superalgebra associated to a Lie superalgebra of classical type. It has been shown that the D-J type superalgebra associated to a Lie superalgebra of type A-G, with the distinguished Cartan matrix, is isomorphic to the E-K quantization of the Lie s...
متن کاملMonodromy of Trigonometric Kz Equations
The famous Drinfeld-Kohno theorem for simple Lie algebras states that the monodromy representation of the Knizhnik-Zamolodchikov equations for these Lie algebras expresses explicitly via R-matrices of the corresponding Drinfeld-Jimbo quantum groups. This result was generalized by the second author to simple Lie superalgebras of type A-G. In this paper, we generalize the Drinfeld-Kohno theorem t...
متن کاملA Duflo Star Product for Poisson Groups
Let G be a finite-dimensional Poisson algebraic, Lie or formal group. We show that the center of the quantization of G provided by an Etingof–Kazhdan functor is isomorphic as an algebra to the Poisson center of the algebra of functions on G. This recovers and generalizes Duflo’s theorem which gives an isomorphism between the center of the enveloping algebra of a finite-dimensional Lie algebra a...
متن کاملTowards a Diagrammatic Analogue of the Reshetikhin-turaev Link Invariants
By considering spaces of directed Jacobi diagrams, we construct a diagrammatic version of the Etingof-Kazhdan quantization of complex semisimple Lie algebras. This diagrammatic quantization is used to provide a construction of a directed version of the Kontsevich integral, denoted ZEK, in a way which is analogous to the construction of the Reshetikhin-Turaev invariants from the R-matrices of th...
متن کاملOn the quantum Kazhdan-Lusztig functor
One of the most exciting developments in representation theory in the recent years was the discovery of the Kazhdan-Lusztig functor [KL93a, KL93b, KL94a, KL94b], which is a tensor functor from the fusion category of representations of an affine Lie algebra to the category of representations of the corresponding quantum group, and is often an equivalence of categories. Informally speaking, this ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008